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AbrtracL We consider the quantum Tnda chain in a semiclassical approximation. If the 
chain k initially in a coherent stale and we constrain i t  10 preselve the coherence. its 
motinn is described by effective classical equations. ?lese turn out to be of the Same 
form as the classical equations of motion, but lhave a renormalized coupling mnstnnt. 
We a11 the solitons arising from this effective model ‘quantum solitons’. 

1. Intmductiun 

Since Bethe’s pioneering article on the spin-$ Heisenberg chain in 1931 [I] much work 
on exactly solvable many-particle quantum systems has been done. In particular, 
the quantum inverse spectral method (QISM) developed by Fadeev and co-workers 
provides a powerful means for both finding and solving exactly solvable models [2]. 

We emphasize, however, that there is still a need to apply approximate methods if 
one is interested in local quantities like, for instance, the wavefunction corresponding 
to a soliton. The variational approach descrihed later gives an explicit approximate 
expression for a rime-dependent wavefunction of a many-body system, which has the 
additional advantage of being quite simple. At the present time, this still lies beyond 
the scope of the exact methods. 

The system in which we are interested 6 the well known lbda chain, a chain of 
equal particles connected by equal springs. The potential of one of these springs is 
V(r)  = (w’/-y*)(exp-y(r - r , ) )  + ~ ( 7 . -  ?,) - l) ,  where the parameters y, w 
have been chosen so as to give the potential of a harmonic spring with frequency w 
as y - 0,. If the system is constrained on a ring of length L and the particle mass 
is chosen to be unity the Hamiltonian reads 

Here z , ~  is the position of the 71th particle relative to its position at rest, zN+, = z,, 
E, is the classical ground-state energy and (1  = L/N is the lattice constant. In the 
following H , ,  denotes the harmonic limit of I f .  

The lbda chain is integrable in the classical [3, 41 as well as in the quantum 
mechanical case [ 5 ] .  The Bethe ansatz [6] and QISM [7] have hcen applied to it. Note 
that Bethe’s wavefunctions serve merely as an approximation, yielding, however, the 
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exact ground-state energy and excitation spectrum in the thermodynamic limit [SI. 
The correct wavefunctions for few particles have been found by Gutnuiller [9] and 
they are implicit in the QISM treatment due to Sklyanin (71. 

Semiclassical quantization procedures have also been applied to the mda system 
[S, lo]. Shirafuji [lo] used a path integral WKB method to quantize the periodic 
Tbda chain. In this approach the energy levels of the quantum system arise from the 
classical periodic orbits, i.e. the classical soliton bec0mes.a stationary state when it is 
quantized. A similar interpretation results from Bethe's ansatz and from QISM. One 
branch of the elementary excitation spectrum turns out to yield the classical soliton 
dispersion curve, E = E ( p ) ,  in the classical limit. This fact clearly supports the view 
of a 'quantum soliton' as a stationary state. 

Our work was strongly motivated by the question whether a soliton on a quantum 
chain could also be thought of as a dynamical object. The answer is affirmative at 
least within the frame of the variational method described later. We look for the best 
dynamics of Gaussian wdvepackets, which we constrain to preserve their shape. The 
centres of the wavepackets move according to effective classical equations of motion. 
In general these would he different from the original classical ones. But in the case 
of the mda chain the effective Lagrangian turns out to be of the same form as the 
original one. Only the coupling parameter w is renormalized. 
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I 
2. Variational principle 

If a physical equation of motion is of Lagrangian form, i.e. derivable from Hamilton's 
principle, this always provides a formally simple approach for getting approximate 
solutions by restricting the functions to be varied to a smaller and more palpable 
family [ll]. A starting point for obtaining approximate solutions to Schrodinger's 
time-dependent equation may be the Lagrangian 

It results in Schrodinger's equation if wried with respect to p, an  arbitrary nor- 
malized quantum state. But if 'p is constrained to he a 2N parameter family 
'Po I ,... ,ci  N ,,e, ,..., n N  of test functions, we will get N second-order ordinary differen- 
tial equations in the parameters n instead. These may be interpreted a~ classical 
equations of motion for a system with N degrees of freedom. 

It is an unpleasant feature of variational methods that the error is always difficult 
to estimate. The crucial point i? to guess some appropriate test functions. In the case 
of the ' M a  chain it seems quite natural to use coherent phonon states, for they give 
the exact solution for vanishing anharmonicity y and should still give useful results 
if y is not too large and thc energy of the considered excitation is not too high. 
Using coherent phonon states (CPS) means nothing clse but restricting the allowed 
wavefunctions to Gaussian form. 

3. Cuherent states 

We use the following notation for CPS: 
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where 6: creates a phonon of wavenumber k, 10) is the phonon vacuum and p, ,  , zn 
are the momentum and position operators, respectively. The relation hetween <,, , rn 
and is exactly the same as that between zIL,p,, and b:,b, .  

(3.2) 

As usual w k  denotes the phonon frequency, wk = 2wsin l k a / 2 [ .  Let us note three 
basic properties of (3.1): 

(3.3) 

(3.4) 

(iii) (iha, - H,&)1/3)  = 0 if t,,, T , ~  follow the classical equation of motion. 

(3.5) 

(iii) led us  to use CPS here. With (i) and (ii) L[O]  is readily computed. 

4. mective Lagrangian 

The difference z,+, - x,, may be written as 

Here all operator independent quantities have been collected in ann.. Let A = x k  a, , ,bk ,  B = E, a,,,/)+,. This yields 

( 4 4  
N-W. = (01(.r,,+, - .rrJ210) =: (A.?) - Lrl/rrw 

[ A , [ A , B l I =  [B,[A,BIl=O 

We may now use the Baker-Kempe-Hausdorff formula and property (i) to determine 
the potential part of L ( / ? ] .  

(81 exi~{-y(r , ,+ ,  - .c,,))I/j) = ~ X I ) { Y ' ( ~ . I . ~ ) / ~ ) ~ ~ I , ( - Y ( ~ , , + ,  -(,,I}. (4.3) 

And in a similar way: 
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Hence it turns out that 
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where some constants have been combined in &'(y,n). In order to keep ( P I H I P )  
finite in the thermodynamic limit d ( y , n )  must be replaced by some other constant 
E .  This may he called infrared renormalization. 

We want min(/jlHIP) to he zero and thus get E = exp(y2(Azz)/2) .  Inserting 
( P I H l f l )  in the expression for the effective Lagrangian we finally arrive at 

where we have already inserted the equation of motion for li,, and suppressed a total 
time derivative as well as a constant term as both are irrelevant for the equation of 
motion. Equation (4.7) is valid for the N-particle chain as well a.s for the infinite 
chain. 

5. Discussion 

Le,  in (4.7) is the classical Lagrangian for the Toda chain except for the extra factor 
E = exp{rz(Az2)/2},  which therefore contains all quantum effects. It reduces 
to unity in the classical limit, i.e. for t2 -+ 0 or w - CO, respectively, but also in 
the harmonic limit, y -+ 0. Hence, as one would have expected the chain behaves 
classically in the harmonic limit. 

The fact that Le,  is again of Toda's form makes it possible to give explicit 
analytical corrections to all classically known quantities by simply replacing w by 
w exp(y(Az2)/4).  In particular, Le,  gives rise to the familiar Toda solitons. We are 
tempted to call these solitons 'quantum solitons', because they describe the motion of 
the test wavefunction. They are broadened compared with classical solitons moving 
with the same velocity. 

We stress again that the existence of these solitons is no triviality. If the effective 
potential in (4.7) had turned out to he of different form, no solitons would have 
resulted. An arbitrary potential suffers different corrections for each order in its Thylor 
expansion, which do not necessarily sum up to a simple factor (see the appendix). 
Thus, in general, the dynamics of the effective prohlem differs in structure from that 
of the underlying classical one. 

The quantum correction E is easy to understand. The zero point motion of 
the particles causes an additional pressure, as if the lattice were compressed by an 
amount y(Az2) /2  per lattice constant. The total force per lattice constant exerted 
on a spring is in the ground state 

(01 - V ' ( , C , , + ~  - z,,)lO) = ( w Z / y i ~ o ) ( ~ ~ - f ( " - " a '  - I )  =: P. (5.1) 

Instead of (wing the lattice constant one could also fix the pressure 

Y r . , ~ l w !  + 1 = p - f ( n - - , . n - ~ ( A r Z l / . ' l  (5.2) 
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Figure 1. Dispersion cuwes for k e d  r r :  The thin C U N ~  is the classical CUIYC. lhe thick 
curve is the N N ~  ohlained from the k t h e  ansalz,, and the hexagons denote the C U N ~  

obtained from the varialional approach. which always overcslimnlea Ihe energy. 

For zero P the chain is streched. The new lattice constant is 

n = T,, + r(Az2)/2.  (5.3) 

In this case Le, agrees with the classical Lagrangian for zero pressure and the 
quantum correction does not affect the dynamics. 

It is always difficult to estimate the error involved in a variational approximation. 
Here we are in the lucky situation that we can test our results for the dispersion curve 
E ( p )  by comparing them directly with the exact ones [U]. The parameters in figure 1 
have been chosen such that C = ( w 2 / r 2 ) / ( h w ) ' =  1 and the lattice constant a has 
been fixed at n = T,,. In fact, C is the only free parameter if the ' M a  Hamiltonian 
(1.1) is written in scaled form, see [13]. The semiclassical regime is characterized by 
C >> 1. In this regime it is scarcely possible to distinguish the three curves. 

If we considcr the case P = 0, the classical and variational curves are identical, 
whereas the curve from Bethe's ansatz lies slightly under the classical one. 

After having finished this work, we became aware that Dancz and Rice [13] 
obtained the Same effective equations some years ago, starting from the Heisenberg 
equations of motion. However, our derivation is technically much less involved and 
uses a variational principle, that guarantees the best possihlc dynamics within the CPS 
approximation. 
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Appendix. Eflective potential fur an arbitrary nonlinear spring 

First we compute the expectation value taken in a CPS for an arbitrary monomial in 
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the displacement of the spring: Defining 
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It remains to compute 

3 

( O / ( Z , , ~ ~  - z,&)'jO) =  CY^^. . . nh,(OJAk,  . . . Akj)O) (A? 
k,,. . , b ,  

with A,; := bkt t 6!Li, and ab. := ~ ~ ~ . x l , ( i ~ i n n ) ( e x p ( i k ; a )  - 1 )  as in 
(4.1). Obviously (OIA,! . . . A,,IO) is zero if j is odd. With the aid of Wick's theorem 
we get for j = 21 

I 

= - 1 ( @ n k l . )  = (Z)!((A2)/2)t/1!.  
PES?' L 

2'1! 

Inserting (A6) in (A2) we get the following: Given the potential V ( v )  = r"' the 
corresponding effective potential is 

= ( -i (A z :? ) ) "~  If E,,, (i r /  (A :i:')) 

with He,, the Hermite polynomial of order 1 1 1  (see (141). We now pick up two more 
formulae from [14]; 

H e , ( r )  = 2 - ' ~ ~ ~ ~ f - / , , L ( T / v 5 )  



Tinie-dependent variaiional approach io soliions 655 

and arrive at 

Thus for every potential which can he represented as a series of polynomials we get 

This may be checked again for the lbda potential (see also [12]). 
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